这是深度学习工程师微专业中的第一门课。
这门课将为你介绍深度学习的基础知识。学完这门课,你将能够:
- 理解驱动深度学习的主要技术趋势。
- 能够搭建、训练并且运用全连接的深层神经网络。
- 了解如何实现高效的(向量化)的神经网络。
- 理解神经网络架构中的关键参数。
这门课将会详尽地介绍深度学习的基本原理,而不仅仅只进行理论概述。
当你完成这门微专业之后,你就能够将深度学习运用到你的个人应用中,调教出属于你自己的AI。
如果你正在找与人工智能有关的工作,那么,在学习完这门课后,应对面试官提问的基础面试问题就绰绰有余了。
制作方:deeplearning.ai
原载于:Coursera
无
需要有基本的数学、编程和机器学习基础。
第一周 深度学习概论:
学习驱动神经网络兴起的主要技术趋势,了解现今深度学习在哪里应用、如何应用。
1.1 欢迎来到深度学习工程师微专业
1.2 什么是神经网络?
1.3 用神经网络进行监督学习
1.4 为什么深度学习会兴起?
1.5 关于这门课
1.6 课程资源
第二周 神经网络基础:
学习如何用神经网络的思维模式提出机器学习问题、如何使用向量化加速你的模型。
2.1 二分分类
2.2 logistic 回归
2.3 logistic 回归损失函数
2.4 梯度下降法
2.5 导数
2.6 更多导数的例子
2.7 计算图
2.8 计算图的导数计算
2.9 logistic 回归中的梯度下降法
2.10 m 个样本的梯度下降
2.11 向量化
2.12 向量化的更多例子
2.13 向量化 logistic 回归
2.14 向量化 logistic 回归的梯度输出
2.15 Python 中的广播
2.16 关于 python / numpy 向量的说明
2.17 Jupyter / Ipython 笔记本的快速指南
2.18 (选修)logistic 损失函数的解释
第三周 浅层神经网络:
学习使用前向传播和反向传播搭建出有一个隐藏层的神经网络。
3.1 神经网络概览
3.2 神经网络表示
3.3 计算神经网络的输出
3.4 多样本向量化
3.5 向量化实现的解释
3.6 激活函数
3.7 为什么需要非线性激活函数?
3.8 激活函数的导数
3.9 神经网络的梯度下降法
3.10 (选修)直观理解反向传播
3.11 随机初始化
第四周 深层神经网络:
理解深度学习中的关键计算,使用它们搭建并训练深层神经网络,并应用在计算机视觉中。
4.1 深层神经网络
4.2 深层网络中的前向传播
4.3 核对矩阵的维数
4.4 为什么使用深层表示
4.5 搭建深层神经网络块
4.6 前向和反向传播
4.7 参数 VS 超参数
4.8 这和大脑有什么关系?
大师访谈
我在本微专业中采访了多位人工智能领域大师,希望爱好人工智能的你可以从他们的睿智回答中了解 AI 领域的专业建议。
Geoffrey Hinton
计算机学家、心理学家,盖茨比计算神经科学中心的创始人,多伦多大学计算机科学系教授,2013年加入谷歌,以神经网络方面的杰出贡献闻名,是反向传播算法和对比散度算法的发明人之一,也是深度学习的积极推动者。他在edX上的课程很受欢迎。
Pieter Abbeel
加州大学伯克利分校计算机系副教授。斯坦福大学计算机学系博士,师从 Andrew Ng。主要关注机器人学习,在edX上有机器学习初级课程。
Ian Goodfellow
Google Brain 研究员,《深度学习》教科书的第一作者,生成对抗网络(GAN)提出者。
【致谢】
本课程中英文目录与字幕由深虫小组的沈敏琰、杨枭、蒋慧桢、李寒宁、陈璟仪、李轩,HTLL 翻译组,及 Eureka 字幕组的 Trazom、Ziling Zhang、范家璇、Terrence、heyhey 贡献,是他们的贡献使得本课程字幕能够又快又准确地呈现在大家面前。另外,我们还感谢其他对本门课程作出贡献的所有 deeplearning.ai 及网易云课堂相关工作人员。